Altered respiratory activity and respiratory regulations in adult monoamine oxidase A-deficient mice.
نویسندگان
چکیده
The abnormal metabolism of serotonin during the perinatal period alters respiratory network maturation at birth as revealed by comparing the monoamine oxidase A-deficient transgenic (Tg8) with the control (C3H) mice (Bou-Flores et al., 2000). To know whether these alterations occur only transiently or induce persistent respiratory dysfunction during adulthood, we studied the respiratory activity and regulations in adult C3H and Tg8 mice. First, plethysmographic and pneumotachographic analyses of breathing patterns revealed weaker tidal volumes and shorter inspiratory durations in Tg8 than in C3H mice. Second, electrophysiological studies showed that the firing activity of inspiratory medullary neurons and phrenic motoneurons is higher in Tg8 mice and that of the intercostal motoneurons in C3H mice. Third, histological studies indicated abnormally large cell bodies of Tg8 intercostal but not phrenic motoneurons. Finally, respiratory responses to hypoxia and lung inflation are weaker in Tg8 than in C3H mice. dl-p-chlorophenyl-alanine treatments applied to Tg8 mice depress the high serotonin level present during adulthood; the treated mice recover normal respiratory responses to both hypoxia and lung inflation, but their breathing parameters are not significantly affected. Therefore in Tg8 mice the high serotonin level occurring during the perinatal period alters respiratory network maturation and produces a permanent respiratory dysfunction, whereas the high serotonin level present in adults alters the respiratory regulatory processes. In conclusion, the metabolism of serotonin plays a crucial role in the maturation of the respiratory network and in both the respiratory activity and the respiratory regulations.
منابع مشابه
Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess.
In rodent neonates, the neurotransmitter serotonin (5-HT) modulates the activity of both the medullary respiratory rhythm generator and the cervical phrenic motoneurons. To determine whether 5-HT also contributes to the maturation of the respiratory network, experiments were conducted in vitro on the brainstem-spinal cord preparation of neonatal mice originating from the control strain (C3H) an...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملThe influence of respiratory state on monoamine oxidase activity in rat liver mitochondria.
Changes in the respiratory state of rat liver mitochondria caused significant changes (up to 10-fold) in the rates of oxidative deamination of tyramine, indicating interactions between the inner coupling membrane and the monoamine oxidase sites in the outer membrane, and suggesting the possibility that monoamine oxidase is regulated by the thermodynamic state of the mitochondria.
متن کاملLoss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short‐term facilitation at mossy fibre to CA3 pyramidal cell synapses
KEY POINTS Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 14 شماره
صفحات -
تاریخ انتشار 2001